
J .  Fluid Mech. (1980), vol. 97, part 1, pp .  145-155 

Printed in  G‘reat Britain 
145 

Oseen velocity distributions in the wake of a flat plate 

By TOSIO MIYAGI AND MICHIO NISHIOKA 
College of Engineering, University of Osaka Prefecture, Sakai, Japan 

(Received 19 June 1978 and in revised form 4 July 1979) 

To account for our previous experimental results, the flow past a flat plate set parallel 
to a uniform stream is investigated on the basis of Oseen’s equations of motion. We are 
mainly concerned with the wake region and calculate the velocity field in detail for 
the range of Reynolds numbers 20-3000, corresponding to the experiments. The 
calculation shows that there is a velocity overshoot in the velocity distribution near 
the trailing edge, with the same magnitude as in the experiments. Furthermore, 
we confirm the experimental fact that the velocity on the centre-line of wake re- 
covers in proportion to the square root of the distance from the trailing edge in the 
near wake. The pressure field is also examined to see the streamwise pressure grad- 
ient in the near wake. 

1. Introduction 
One of the most interesting problems in the theory of viscous flow is the two- 

dimensional steady flow past a finite flat plate set parallel to a uniform stream. Gold- 
stein (1930,1933) investigated the development of the velocity distribution in the wake 
of the plate on the basis of boundary-layer theory. Recently, some attempts have also 
been made to solve the problem on the basis of the full Navier-Stokes equations of 
motion and higher-order boundary-layer theory (Talke & Berger 1970; Schneider & 
Denny 1971; Stewartson 1974; and others). 

I n  a previous investigation (Nishioka & Miyagi 1978), we measured the velocity 
distributions in the completely laminar wakes a t  R = 20, 100, 400, 1200 and 3000, 
where R is the Reynolds number referred to the speed U, of the uniform flow and the 
length I of the plate. One of the interesting findings from the experimenb was the fact 
that in the near wake the velocity U, on the centre-line recovers in proportion to the 
square root of the distance <from the trailing edge, i.e. U,cc (4. So far as we know, the 
only theoretical result that seems to agree with this fact is Schneider & Denny’s 
numerical solution for an extremely small region (( < 0.001) enclosing the trailing edge, 
obtained on the basis of Navier-Stokes equations a t  R = lo5, which is much higher 
than the Reynolds numbers of our experiments. 

I n  the present paper we examine the velocity distributions in the wake on the basis 
of Oseen’s equations of motion a t  R = 20 to 3000, and compare the solutions with our 
previous experiments. The present configuration, namely the parallel flat plate, is 
favourable to Oseen’s approximation, because the normal velocity component will 
be very small everywhere. I n  addition, one may expect to obtain analytical results 
from Oseen equations, which are simpler than Navier-Stokes equations and yet 
retain the elliptic character of these equations. Therefore, Oseen equations may give 
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us some qualitative results, if nonlinear effects do not play so crucial a role, though they 
may not be quantitatively correct, Here, with this expectation in mind, we endeavour 
to seek for some analytical results corresponding to our previous experiments. 

2. Formulation and previous results 
Suppose that an incompressible fluid of kinematic viscosity v is in steady two- 

dimensional motion past a flat plate of length 1 set parallel to the uniform stream of 
speed U,. We take Cartesian co-ordinates (x, y) normalized by 1, with the origin a t  the 
leading edge of the plate and the x axis along the direction of the stream, and we 
denote the x-, y- velocity components and the vorticity by U,(l+u), U,v and 
U, w / l  = (UJ l )  (&/ax- &lay), respectively. Then, Oseen's equation for the vor- 
ticity and the equation of continuity can be written as 

(A-Ra/dx)w = 0, R = Um1/v, (2.1) 

au/ax + a v p y  = 0, (2.2) 

where A stands for 82/8x2+82/i3y2. The boundary conditions on the surface of the 

u = - 1 ,  v = o .  (2.3) 
plate are 

Bairstow, Cave & Lang (1923), and Oseen (1927) himself, reduced the problem 
given in the above differential form to an integral equation for the distribution func- 
tion of fundamental singularities (the so-called Oseenlets) which are required to 
represent the plate. Later, the extension of this reformulation to the case of a cylinder 
of arbitrary cross-section was made by Miyagi (1964). Following his work, we may 
express the complex velocity u - iv in the present case in terms of the distribution 
function A(71 as: . ,  

[ 4R e@f'coa~{Ko( &R?) + K,(#Rt) e-@) - e-iB/?3A (7)  d7, (2.4) 

where F = [(x-~)~+y2]* and 8 = tan-'[y/(x-~)] (2.5) 

are polar co-ordinates whose origin is at  the point r on the plate where the typical 
Oseenlet is situated, and the Kll's are modified Bessel functions. It is noteworthy that 
A(7)represents the shear force at  7 on the plate. Letting the point (2, y) in (2.4) approach 
a point ( tB,  0) on the body, we can apply the boundary conditions (2.3) and we then 
get the integral equation for A(7),  namely 

s,' ~ ( t ~  - 7) A(7) d7 = - 1, (2.6) 

(2.7) 

where the kernel is given by 

K ( S )  = $Re*ns[Ko($R fsl)+sgnsK,($R Is/)]- 118. 

Once A ( T )  is determined, the velocity field can be calculated from the equation 
(2.4). For large Reynolds numbers, A(7)  is given as 



Oseen velocity distributions in a wake 147 

where erfc is the complementary error function defined as 

A1(7) and Az(7) were obtained by Piercy & Winny (1933).  A3(7) and A4(7) were added 
by Seebass, Tamada & Miyagi (1966) to improve the solution by reconsidering the 
edge singularities. 

3. The centre-line velocity Ci in the near wake 
So far as we are concerned with the centre-line velocity, we may put y = 0 beforehand 

in the integrand of (2.4).  Here, we focus our attention upon the near wake, where the 
distance 5 from the trailing edge is much smaller than unity. In fact, we assume that 
< is of order R-* and then R [  is of order Ri. Thus, the Bessel functions in (2.4) may be 
replaced by their asymptotic expansions, since their arguments are always positive 
and large. Then the centre-line velocity U, may be written as 

where 

and t = i R ( 1  + E - T ) ,  6 = X- 1. 

In  what follows, we shall find approximate expressions for these integrals that are 
accurate to O(R-1). 

For the case k = 1, putting 7 = ( 1  + E )  cos2 4, we can easily perform the integrations, 
obtaining 

2 2 2  
u ~ , ~  = - 1 +-tan-l@ = - 1 +-@-- [t+O(R-P),  

77 n 371 

1 1 ( 1  + E $ -  1 
u1,2 = -- ~ 

(n3R)* (1+5)*In ( 1 + 6 ) * + 1 '  (3.3) 

As will be seen below, ul ,  exactly cancels with the first term of u2, 1. 
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For the case k = 2, integration is more difficult but can be carried out as follows. 
Putting T = sin2 $ and integrating by parts, we have 

where + <)+(<+cos2$)* + 5 - cos q5 
(1 + <)+ (< + COS2$)+ + + cos $4 

*n l - C O S $  
d$ = -46 ,  s 0 In 1+cos@ 

(3.5) 

00 

and G is Catalan's constant7 ( -  1)"/(2m+ 1)2 = 0.91596 ... 
Il(<J, we may differentiate (3.5) with respect to < and then integrate it. Thus, we have 

By considering the behaviour of I,(<) for 6 < 1, the integration of (3.6) gives 

Thus, we arrive at  

dd -- J S' tan-1 
(1-t .5p-l  2 In 

1 
UZJ = - ~ 

(n3R)* ( 1  + E)+ (1 + <)* + 1 (7r5R)* (1 + <I4 od(  1 + d)* 

<*+O(R-Q). 1 ( l+[)+-l  4 -- 1 
=-- 
* ' (7r3R)* (I  + E)* In ( I  + E)* + 1 (n5R)t 

By a similar argument u2, becomes 

dd + 8G] 
( 1  + d ) f -  1 

d+( i+d)+  ( 1 + d ) * + 1  
u2,2 = - - In 

-+- ln-+4C-2 +O(R-2). " ( ' 4  ) - _  - 
' 7rR <4 7r3R 

We can calculate u2, by the same procedure; the result is 

We now proceed to the case k = 3. After the transformation [R(1 -?)I* = d, inte- 
gration by parts gives 

u3,1 = - "*[ 7r - l+z/R'( l+&)*e-Ldd] n* 0 

(3.11) 

t See, for example, I. S .  Gradshteyn & I. M. Ryzhik, Table of Integrals, Series and Products 
p. 529 (Academic, 1965). 
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under the assumption that R[ = O(R*). The following expressions are obtained in a 
similar manner: 1 1 1  

2 (n3R3)i 5 - + O(R-t),  u3,2 = -- - 

(3.12) 

u4, = O(R-*). 
Gathering above results together, we find the analytical expression for V, in the 

(3.13) 

It should be noted that the first, second and third terms are of orders R-f, B-g and 
R-I respectively, and the dominant term does not depend on the Reynolds number and 
is proportional to [t. It will be also of interest that the first term of (3.13) originates 
from the singularity at the leading edge. 

In  figure 1, the values of U, calculated for R = 3000 are represented by thick full 
line and they are compared with our experimental data and other theoretical and 
experimental results. They agree satisfactorily and confirm the experimental findings 
that V,cc 68 for 5 < 0.5. The thin full line for R = 3000 and the broken line for R = 20 
were obtained in the manner described in the next section. It may be added that the 
curves for R = 100, 400 and 1200 obtained from (3.13) lie between the curves for 
R = 20 and 3000, though they are not shown here. 

2 2 4 2 v,=-@- -c+- ] @+ 
n (377 (7r5R)4 

form :-f 
(In it+ 4G- 2) + O(R-5). 

4. The velocity distribution in the wake 
Since (2.8) is not accurate to estimate the velocity field for smaller Reynolds num- 

bers (for example, R = 20), we must adopt the method of numerical computations to 
determine A(7).  Such a numerical method has already been developed for the cases 
of a normal flat plate and a circular cylinder by Miyagi (1968, 1974). 

We divide the interval of the integral (2.6) into n equal parts. Thus, we have 

K(tB-7)ap(7)d7 = - 1, 
P = l  1"'" ( P - l ) / n  

where up@) denotes unknown distribution function in the pth sub-interval. When n 
is large, each sub-interval of the integral becomes very small so that within the pth 
sub-interval ap(7) may be assumed to be constant and equal to up, say. Further, it  is 
convenient to set marked point t B  a t  the middle point of each interval in turn. Then, 

t During the present work, we became aware of the fact that equation (12) in the paper by 
Seebass et al. (1966) gives the Fourier transform of the perturbation velocity as h - ( p ) .  So, 
following the method of these authors, we can obtain an approximate expression for the 
velocity on the centre-line, namely 

u c -  - i - eflsn erfc (5/2n$ 
although they did not give this expression. For 6 < 1 ,  this leads to U, = (J(2)/n)5*+ .... 
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FIUTJRE 1. Non-dimensional velocity on centre-line of wake 7.7, us. non-dimensional distance from 
trailing edge 5. Present calculations: -, analytical result for R = 3000 [equation (3.13)]; 
- , numerical result for R = 3000; ---, numerical result for R = 20. Other theoretical 
results: - - -, Schneider & Denny (1971), R = 105; - - - - , Goldstein (1933). Measurements 
o f N i s h i o k a & M i y a g i ( 1 9 7 8 ) : 0 , R = 2 0 ; ~ , R =  1 0 0 ; . , R = 4 0 0 ; O , R =  1200;m,R= 3000. 
Measurement of Mattingly & Criminale (1972) : + , R = lV .  

by considering each of the n positions for t,, we obtain n linear algebraic equations 
for the unknowns up ( p  = 1, 2, ..., n). 

As can be seenfrom the structure of the analytical solution (2.8), the exact distribu- 
tion function should have singularities at  the points 7 = 0 and 1.  So we take into 
account these singularities in such a way that a1(7) = 4/74 and u,(7) = aA/(l-  7)*, 
where u; and a; are unknown constants. Thus, we can estimate numerically the dis- 
tribution functions for any Reynolds number. To convince ourselves of the accuracy 
of this numerical procedure, we computed the distribution functions for R = 100, 
400, 1200 and 3000, and we confirmed good agreements with the corresponding 
analytical solutions, 

To determine the velocity field, we have integrated (2.4) numerically using the 
distribution function obtained by the above method with n = 16 for the case R = 20 
and the analytical result (2.8) for the case R = 3000. 

The computed velocity distribution in the near wake at  R = 3000 is shown in 
figure 2, together with the previous experimental data. The experiment indicates 
that the velocity distribution at  the trailing edge is almost of the Blasius type except 
for the presence of the velocity overshoot in the outer parts. The subsequent deviation 
of the distribution from the Blasius occurs only in the inner part, that is, the outer 
part remains almost unchanged even up to 6 = 0.15. It may be seen from figure 2 
that these features are well predicted by the present results, although the calculated 
wake is thinner than the observed one. 

In  figure 3, the velocity distributions in the far wake for R = 20 and 3000 are also 
compared with the corresponding experimental data. The agreement between the 
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FIGURE 2. Velocity distributions in the near wake at R = 3000. Present calculations (lines) are 
compared with measurements of Nishioka & Miyagi (1971) (symbols). -, .,E = 0 ;  - - -, 0, 
E = O . O 2 8 5 ; - - - ,  A , E = 0 . 1 5 ; - - - - , A , E = 0 . 3 0 ; - - - ,  ., =0.70;--,  O,c= 1.5. 

theory and experiment is satisfactory in the far wake, as the comparison at  < = 5 
shows. At stations < = 0 to 1.0, the non-dimensional half-width of the wake is thinner 
a t  R = 20 than a t  R = 3000 in the experiments. This is also the case in the present 
theory. Moreover, the present theory predicts a velocity overshoot of the same 
magnitude as that observed in the experiments. 

5. The pressure field 
For small Reynolds numbers, it  is well known that the pressures at  the edges of the 

plate have singularities of the Stokes type, ( r  ei*)-*, where ( r ,  8) are polar co-ordinates 
referred to the point under discussion. For large Reynolds numbers, however, it  is 
not self-evident whether the pressures in the vicinity of edges still have these singu- 
larities. In Oseen flows the pressure p is harmonic and is given by 

p = Jol d7. P 
Hence we can easily evaluate the contribution of A1(7) in (2.8) to the pressure p ,  at 

the leading edge as 
1 sin&3, 

p,=-- +..., 1 9  Rr, > 0, 
(nR)i r i  

where (rL, eL) are polar co-ordinates referred to the leading edge. 
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FIGURE 3. Wake development at R = 20 to 3000. 
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At the trailing edge, on the other hand, its contribution p1 becomes logarithmic and 
is not Stokes type, i.e. 

In&-,+ ..., 1 9  Rr, > 0, (5.3) 
1 

PI = - (7r3R)* 

where we have taken polar co-ordinates (rT, 6,) referred to the trailing edge. In  this 
connexion, i t  should be remembered that the first term A1(7) is singular at the leading 
edge only. 
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The calculation of the contribution p 2  from the second term A2(r)  is somewhat 
cumbersome, but i t  proceeds as follows: putting T = sin2 # and integrating by parts, 

Further, through the substitution C O S ~  = d, and a decomposition into partial frac- 
tions, we get 

d# 

d4 
fn cos2#+2Bcos#+f 

c f - d  1 In 
8 f B(z2 + y2) 0 COS’# - 2B COS # +f + 

where 

c = 2, d = 2 2 - 2 -  y2, f = [(z- 1 ) 2 + ? / 2 ] 4  g = x- 1, 

A = “f+d14 B = [Bdf-dlJ. (5.6) 

The first integral is equal to -4G, as seen in the above. Differentiating the second 
integral, I,, in (5.5) with respect to TT and introducing the substitution tans# = d 
produces an integral which can be integrated to give 

It immediately follows that 

I, = -2r~[{lnar,-2}sin98,+eTcos48,1+..., 1 $ Rr, > 0. (5 .8 )  

The third integral I, is given in a like manner by 

1, = m2 ;i- + rT[{ln&rT f - 2) cos 46, - 8, singe,] + . . ., 1 RT, > 0. (5.9) 

From these results, we obtain the expression for the pressure p 2  in an extremely small 
region including the trailing edge as 

The contributions p ,  and p ,  of A3(7) and A,(T) respectively, are also given as 

(5.11) 

(5.12) 

by making use of the transformation of these integrals into the type of Laplace’s 
integral transform (y  = 0.5772.. .). 
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FIGURE 4. Non-dimensional pressure on centre-line of wake p ,  ws. non-dimensional distance from 
trailing edge 6.  Plotted are p ,  for R = 20 (- - - -) and lop, for R = 3000 (-). 

4 

k= 1 
Thus, final results C pk show that the pressure singularity is of Stokes type there 

also for high Reynolds numbers, though the factor R-I is different from the factor R-9 
in the corresponding expression at  the leading edge. 

In  the course of the calculation of the velocity field, we have already evaluated the 
integral (5.1),  thatis, thepressuregivenby (5.l)isequal to therealpartoftheharmonic 
part of the perturbation velocity. In  figure 4, the pressure on the wake centre-line, pc  
(the pressure coefficient referred to the dynamic pressure of the uniform flow), is 
plotted against 5 for R = 20 and 3000, and this graph indicates the importance of the 
streamwise pressure gradient. The appearance of the velocity overshoot may be 
due to this strong suction a t  the trailing edge, though the suction may be finite in 
experiments. 

This suction affects the flow approaching the trailing edge. Indeed, the velocity 
overshoot appears even upstream of the trailing edge, as was found in our previous 
experiments. This elliptic character of the flow cannot be described by the boundary- 
layer theory. Furthermore, the streamwise pressure gradient is considerable in the 
near wake, as shown in figure 4. These may be the main reasons for the disagreements 
between our experimental results and those of Goldstein (1930), who used the boun- 
dary-layer approximation and assumed the wake to be isobaric. We expect that a more 
complete solution of Navier-Stokes equation may settle this problem. 
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